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The system of equatlions of the nonllnear plate theory contains an intrinsic
small parameter ¢2? (the relative plate thinness). In the case when only
the tensile stresses are developed in the corresponding membrane (¢ = 0), it
has been shown by asymptotic methods that for small ¢ there exlsts a state
of equilibrium in which the plate behaves llke a membrane everywhere except
in the narrow region near the boundary where the edge effect takes place. A
method of obtalning thils solution has been constructed at the same time. The
general results obtained are then particularized for the cases of an axisym-
metrlcal plate and a plate of arbitrary shape subjected to tenslle stresses
on the contour.

1. On the formulation of the problem. We consider a system of nonlinear
differential equations of the theory of flexible plates [1] due to Karmin

A2F + Y, lw, w] = 0, {e*A%w — w, F1 — ¢ =0 (1.1)
w, FI = wexFyy + wyyFax — 2w,y Fry (1.2)

w Eh? E
(wzﬁ, £2 = m, qqul/—-h— O<'V<05) (13)

Here F 1s the stress function, W 1is the deflection of points of the
middle surface. The quantity ¢® characterizes the relative plate thinness,
h 1s the plate thickness, ¥ 1is Young's modulus and v 1is Poisson's ratilo,
g, (x,;y) 1s the magnitude of the external load which is acting along the nor-
mal to the plate surface. It is assumed that g4, (x,y) 1s a sufficiently
smooth function.

Let a plate occupy a bounded region p with a sufficiently smooth con-
tour ' . Moreover, it is assumed that on the contour*

*

The case of a rigidly built-in plate has been chosen merely for the sake
of definiteness: what follows can be easily applied to some other com-
mon cases, e.g. hinge supports.

kot
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why 0, wy'p - (15

".fl" - T ("1) > U? [".»‘:rll‘ x\: (A} (A‘ = i} (1.:})

Here n and 171 are the normal and tangential directlons on the bounary,
and F.. (Ad) and F,.(A) are, respectively, the normal and tangential com-
ponents of the external traction applied to the plate contour. It is assumed
that the system of forces applied to the contour of the plate satisfies the
conditions of equilibrium and compatibility. Then the existence of the so-
iution of the problem {1.1) to (1.5) follows from the results of [2 and 37.

Along with the problem (1.1) to (1.5) we will consider a "degenerate"
problem {on the equilibrium of a membrane)

AFy -+ Yy lwy, wpl = 0, — [y, Fol — ¢ =0 (1.6
wolp = 0. Fyop = T (), Fondr = S (A) e (1D

Here as well as everywhere henceforth the indices following a comma desi-
gnate differentiation with respect to corresponding variables.

Consider the problem of the asymtotic behavior of the solutions of {1.1)
to {1.5) when ¢ - 0 . In the case of a circular-symmetrically loaded plate
with various support conditions, asymptotic representatlons were constructed
for a symmetric solution in [4 to 7], and it was established that the solu-
tion is close to the solution of the degenerate problem (e = 0) everywhere,
except In the narrow vicinity of the boundary, where the edge effect takes
place. In [8] Fife has investigated the asymptotlic expansion of the solution
of (1.1) to (1.5) for the case of a rigidly built~-in plate of arbitrary shape,
subjected to uniform normal extenslon on the contour

Foep sazeonst, Fop -0 (1.8

In the same way as in the case of radial symmetry, 1t was established that
for e - O the solution of the problem (1.1) to (1.4) and {1.8} converges
uniformly to the solution of the ‘degenerate" problem everywhere except in
the close vicinity of the boundary. The gquantlity jp - QG*VJ is here assumed
to be sufficiently small, which permlts the use of the method of successive
approximations,together with the existence of soclutlions of the two problems,
to prove their uniqueness. On the other hand, 1t 1s well known {9 to 11]
that a leoaded plate or a shell has, generally speaking, more than one form

of equilibrium.

Hence, the gquestion naturally arises which of the solutions of problem
{1.1) to {1.5) ave "close", 1in the above sense, to the solutions of problem

(1.6)and (1.7}, when ¢ = O

In the membrane only the tensile stresses are developed *. Therefore,

* In the literature such membranes are referred to as nonmetallic (see [20 and 21]).
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the solutions of problem (1.6) and (1.7) which are mechanically meaningful
are those which at every point of the region p satlsfy conditions

Foue=0y,>0, Fo,y=0,>0, Fo=—r, 00,—1*>0 (1.9)

In what follows such solutions are referred to as positive. It is natural
to look for solutions of problem (1.1) to (1.5) which are close to the posi-
tive solutions of problem (1.6) and (1.7). We will consider solutions of
problem (1.1) to (1.5) for which a condition of the form (1.9) is satisfied,
and will refer to them as membrane solutlons.

It has been shown in the present paper, that if the positive solution of
problem (1.6) and (1.7) exists, then the membrane solution for the plate
also exlsts. It 1s unlque (Theorem 3.2); asymptotic expansions are con-
structed for it, and estimates of errors are established for ¢ - G (Theczoem
3.3). Namely, when ¢ - O the membrane solutions become positive solutione
everywhere, except 1n the close vicinity of the boundary where the edge ef-
fect takes place. The proof of the above facts is furnished by constructirny
the asymptotic expansions of the solution of problem (1.1) to (1.5), analo-
gous to those obtained in [6 and 7] for the case of radial symmetry (Section
2), and by applying the Newton's method which was developed for the operator
equations by Kantorovich [12].

It becomes obvious from what has been said above, that the existence of
the positive solution for a membrane is an important factor. Such exlstence
can be established in a number of cases. For instance, 1t exists (a)in the
case of a symmetric plate (Theorems 4.1 and 4.2) and shells of revolution
%13], (b) in the case {1.6) and (1.8) and in analogous more general ones

Theorems 4.3 to 4.5). In the general case of problem (1.6) and (1.7) there
are no positive solutions. These questlons are discussed in Section 4.

Let us point out that, unlike in [8], here the argumentation of the asymp-
totic expansions 1s not related to the uniqueness of solution (corollaries
of Theorem 4.1). Moreover, in Section 2 we consider a case in which the edge
effect 1s described by boundary layers of a fractional order. This 1s the
case of a rigidly bullt-in plate whose contour is free of stresses., In the
general case, when problem (1.6) and (1.7) does not have the positive solution,
the degeneration 1s of a more complicated character. One of the examples of
this nature 1s considered by Fredrichs and Stoker [14].

All arguments and proofs glven below can be easlly transferred to the case
of shells of constant curvatures.

2. Construction of the asymptotic expansion, Let us introduce the fol-
lowing notation. Let the vector V = (ﬁﬂzu) be the solution, and ]?1[\q
be the left-hand part of the system ( 1.1). For the solution of (1.1) we
construct asymptotic expansions of the form )
ne2 -2 n n
, ) -, A , V! | Voog 0 5 .
Fo- }_ ek, = : /. MR w = ) ey —- l esgs” + 2, (2.1)
S s =) 5==0) §=={
The functions F,, y, are obtained by means of the first iteration proceocs
[15]). Namely, we set
n n
B} A g N g
V= (Fow), Fro= ek, ut = Y e (2.2
$=0 =0

and require that

Py [Val = O (&) (2.3)
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Setting the coefficients at e°,e¢l,.,.,e* 1in (2.3) equal to zero we obtain
the system of equations (1.6) and (1.7) which ylelds F, and w,, and for the
determination of F,, w, we obtain the gystem

A4y D) e wnl =0 Aw, — D [Fown] =0 (24)

Kk+m=s k+m=3s
(wa=0, s=1,2,...,0+2)
with boundary conditions
wsll‘ = O’ Fs,r'r II‘ = Bs(l); Fs,nt l[‘ = Bs(2) (s=01,...,n42) (25)

Here B,®) (i = {, 2) are so far unkeown functions. The functions F ,
v (8 = 0,1,...) do not satisfy all the boundary conditions (1.4)and (1.5)
and, consequently, the difference V — V, is not small near the boundary T.
The inconsistencles which arise in the fulfillment of the boundary conditions
(1.4) and (1.5) are compensated by functlons of the boundary-layer type h;

and g,°, which are determined by means of the second iteratfon process [15].

Namely, we look for the difference V — V. in the form

F — Fr = Z e™R,,, w—w" = 2 M gm (2.6)
m=0 m=0

In order to determine the functions h,, g,, it 1s necessary to change
from the coordinates x, y to the local coordinates. Let us introduce a
coordinate system p, ¢ 1in the vicinity of the boundary T ; namely, we
construct a system of normals, 1.e. vectors AR of length n > O, drawn
from points 4 of the arc I into the domain D , so that the vector AR
forms a right angle with the tangent to the arc I' at point 4 . If n is
sufficiently small the normals will not intersect each other. The coordinate
p of the point ¥ on the normal 4R 1s equal to the distance 4¥ , and o
is the arc length 04 , where 0 1s some point of the arc T , for which
@ = 0.

We substitute (2.6) into (1.1), bearing in mind (2.3), and in the resulting
expression we pass to the local coordinates

n n n

S e A s Dy e [, gl + e D) € lgm gl = O (&™)

8=0 k+m=3s k+m=s
n n n n
Z gt2 Azgs - Z 1 [Fm ’ gk] - 2] &° [wm7 hk] - 2 €8 [gkv hm] ==
8=0 kim=s k+m==s ktm=s

= 0 (™) 2.7)
Here

By = BeofPxPxy + Goo (@xi0x) T Pxyfrx; ) T BooPx; Py, 1 BoPuxyxy T BoPryuy
(i, k=1,2, ;=2 mm=y)
In the new coordinate system the operator A2 will be of the same order,

but will have variable coefficients. Expanding these coefficients into
Taylor series with respect to p 1in the vicinity of p = O and making the



Asymptotic integration of a system of nonlinear equations 411

substitution p = et , we obtaln
i o
u : .
Ay = et (——at4 + D) eiR; u + eNn RN+1u)
i=1

Here R; (i {N) and Rpy,; are linear differential operators, whose
respective coefficlents are of the form

2 1 (@) 1, D d;i (o, @) 8

i<i J<N+1

where dl(p,cp) are functions of p, o 1ndependent of e . Furthermore,

let N

Fn= Z leplv W = 2 wmlpl . (28)
=0 1==0

be the corresponding expansions of the functions F, and yp, into Taylor

series in the vicinity of p = O . Now, in (2.7) and (2.8) we set p = ez,

we substitute (2.8) into (2.7) and set the coefficlents at the same powers

of ¢ equal to zero. For the determlnation of h,, g, we obtalin systems

of linear differential equations of the fourth order with coefficients de-

pending on ¢ . The boundary conditions for the functions h,, g, when

t = O are determined by the values of the difference V — V. on the boundary

T for the corresponding powers of ¢*,

ow

8

ag,
gs |p=0 =0, 0

=0 - 0n

(s=0,1,...) (2.9)

r

and when ¢ = » , from the condition orf existence of the boundary layer, i.e.

oh

_ 9
t=o0 Ot

ag,
ot

=hyi=o=0 (s=0,1,2,..) (2.10)

t=00

Then from (2.7) for h, and A, we obtain
h, oh,

a5 =0 hilw=g| =0 =01 @41
Hence it follows that
hy=hy, =0 (2.12)

Now we determine the functlons B(‘i) ((p), by setting the coefflcients at
e* (8 =0,1, ..., n + 2) equal to zero in Expressilons

n+g n+2
Z gt (Bg(l) +hs,1-r) |P=0 =T (q)), Z es (BS(S) + hs,pr) ]p=o =8 (q))
8=0 8=0

In perticular, from (2.12) we find that By) = T (9), By® = § (). From
here actually follows the correctness of choice of the boundary condition
for the positive solution of problem (1.6) and (1.7).

Setting the coefficient at ¢ 2 equal to zero in the relatlon which is
obtained from the second expression (2.7) in conjunction with (2.9) to (2.12)
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leads to Equation
) d*go

918 a FIT 0 (2.13)

= — g 00
=0 an JI" Ot |t=o00

ot

d
gOI/iO = 07 £

=0 (2.14)

Here ¢ 1s a function depending on the coordinate o and defined by the
relation

a = {Fo,x.\' Py A Foom pa — 2F0,xup.\'pu] r = [(px(Pu — PyPx)? Folp=T ()

In the case when T(p) > O, from (2.13) and (2.14) we obtain

08y __ —VT(@)p duy |
o T Woe XP Ere

o, fronand
00 on

(2.15)

r

i.e. 3p,/3p 1is a function of the boundary-layer type of order zero [15].
From (2.15) we find

0 (0) == —VI@e _
go (0) == 77?@0 [ exp Lwe 1J .16

Furthermore, from the first expression (2.7) in exactly the same way we
obtain the equation for h,

(’}”13 1/ { (’hg 5
T T Waosss ot e [gos &olis. 1 hy ipiu)=: at liow 0 (247
where g, is determined in (2.16). Integrating we find

hy = ¢ ley (6 ) eV T@ 4 ¢ (1, ) e TN | (2.18)

Here ¢, (t.p) and ¢,(¢,p) are polynomials of the sscond order with
respect to t . We determine the functions g,(s= 1,..., n) from equations
which have the form of (2.13) and (2.14), but are nonhomogenecus, and the
functions h, are found by means of term by term integration of expressions
of the form p,(t,p) exp (- k(p)t), where k(y) > O, and P, (¢,9) 1is a
polynomial in ¢ of order not higher than s . Using the method of mathe-
matical induction in a manner similar to that of [15], it can be easlly
shown that hr, and g, are the functions of the boundary-layer type of integ-
gral order. Filnally, let us determine the functions #,° and g,° (¢ = 1,
2,...) in Formulas (2.1;. To that end we set

o/ e =0/ 0) g (249

Here W(ﬂ) 1s the smoothing-out function {(equal to 1 for 1 <: Vq and to
0 for y 2> %/,).

Thus the process of constructing an asymptotic expansion 1is reduced to
the following. We find the positive solution F,, w, of problem (1.6) and
(1.7) and from (2.13) and (2.14) we determine ¢, . Then from (2.4) we
successively find F,, w, (s = 1,2,...), and from the nonhomogeneous equa-
tions of the form {2.13) and (2.14) we find g, . (These equations have not
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been written down because they are very cumbersone)

Let us now construct the asymptotlc expansion for the case when
T(4) = S(4) = 0,

i.e. when the edge of the plate is free of stresses. As 1is well known, in
that case the boundary conditions for the function & <can bg reauccd to the
form
F(A)=F,(4) =0 (aer) (2.20)

Since T{4) = O Equations (2.13) and (2.14) are incompatible. Thirc meanc
that the boundary layers of 1lnteger order with respect to e are unsultatle
for the descriptlon of the edge effect phenomena, and therefore terms cf
higher order with respect to ¢ must be taken into account. Let us &pain
consider Equation (2.7) and let us write down the following expresslion in
local coordinates in more detail

. 9
Z [Fm, gk](x. y) = 2 {(0xPy — 0uPx )® [Fom, gk](p.w) + 8k, 6o [(P.vx9112+
m-tk=s m-k=s
2 2
+ Py 0% — 200y 0x0y) Frno + @ax 04 + G0 * — 200y 02 0y) Finol -+ L}
N
(Fr =2 Frupt) (2.21)
=0
Here under 1 we include terms which contaln lower-order derivative. of
the functlon g, with respect to p . Furthermore, we set U = g and in
(2.7) and (2.21) we make a substitution o = ut . Exactly as in the yene-

ral case, we find that hy=h, =0 and B® = B\ = 0 (i = 1,2). Since
B = () we deduce from (2.4) and (2.5) that for ¢ =1 F;=w, = 0.

~
Now, in order to determine g, we collect the terms at u~l, and bearing in

mind that F, =y, =0 everywhere in p , and

F00,¢ = Foo,w = Foo,w = Foo,w = FOO,p =0

on the contour T we obtailn

04 a%g ;
80— aytFy o 5o = 0 (2.22)

Here
a; = (0x0y® + PP’ — 202y0:00) | 1

og, 0wy

l 9g
80 - 984
8ol g™ 0, 9t |1=o an

r’ Lot ‘t::oo

Ir ﬁhmpal = [{p) > 0, then the solution of problem (2.22) and (2.23) can
be obtalned in the form

a 8 )
'dgtol ,-}: Wy (0, ) SAI (— &) dty, Wy = _au;;’ - (2.24)
Here [16]

A (—t) = {cos (@t tmyd, 1= @l (> 0)
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The asymptotlc representation of A, (— ¢) for large values of t has the
form

A (— ) =Y, V7 B)Mexp [— 2Y)1 (1 + O (=), t>0 (2.25)

Let us note that in the case of a circular, symmetrically loaded, rigldly
built-in plate {the contour is free of stresses) 1t 1s easy to show that
I{p} > O [7]. 1Indeed, inthat casep =1 — 7, P2 = 22 + j? 1 and

y=—1. It remains to show that F,, ., < (. That follows directly from
Formula (4.10) for T =0 and r =1 .

1
We have Foospn = __%S...@f.(_g_r_ dr <0 [ (1) =0]
0

It has been established in this Section, that if (1.9) is fulfilled on
the contour (which in turn implies the inequality LA >04e T')}, then
the asymptotic expansions of solution (2.1} can be ormlly constructed.
Below 1t will be shown that the existence of the positive solution 1s the
sufficlent condition for the existence of the membrane solution, for which
the asymptotic expansions are valld. At the same time the estimates of
errors for ¢ - O will be established.

3. Justifioation of the asymptotio expansions. BExistence of the mem-
brane solutions. *Let us introduce function spaces.

1. The space L»(D)’ composed of functions summable with the power p> 1
and with the norm

[, = (Y1717 dz )™ (3.)

If the vector-function V = (F,w), 1is considered, we will assume that
F,w & L, (D) if each of its components V&L, (D), andwe will define
the norm of V by the relation

IVl = F e’ + vl (3.2)

2. The space §F of functions s which satisfy the boundary conditlons
(1.4) and which possess in the domain D the generalized derivatives of the
order I = 4 which belong to [, with the norm

IlfllH:(SE Y

D k=0 m+{n=Fk

1
/s
dedy ) 3.3
azmar 4 (3.3)
If the vector-function V = (F,w) 1is such that its components F,w &= H,
then we will say that V&= L and we will associate Y & H with the norm

2 2
IVIZ=1F1%+lwik (3-4)
3. The space C( ) of functions s continuously differentiable m times
right up to the contour. The norm in C(m) 1s defined by Formula

m

Ulom = % max| 2L | + maxif
wipek
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Let s be an arbitrary, four times continuously differentlable function,
which satisfies vhe conditions (1.5) on T . We set

F, =F —{, w, =w (3.5)
Then (1.1) to (1.5) are reduced to the problem
Ay A Yy w, w4+ A =0 (3.6)

62A2w1 — [wh F1] - [wu f] —q= 0

with homogeneous boundary conditions

wy (A) =wn (A) = F (4) = F1,n (4) =0 (Aer) (3.7)
We look upon problem (3.6) and (3.7) as a functional equation
PIVI=0 (3.8)

Here V = (F,, w,) and has been introduced into (3.5), and the operator P
1s defined by the left-hand part of the system with (3.6). It 1is easy to
show thec the operator P acts from the space J upon the space [.,

For the presentation below 1t is convenlent to introduce the following
designations into (2.1)

o = F — 2,0, Y =w — 2 3.9)
Lemma 3.1 . The followlng estimates* are valid for o, and .,

DN + Yy lgr, Pl = O (e¥4), Ak — [@x, Yl — g = O (e¥+) (3.10)

We will omit the detailed proof and will only note that to obtain the
estimates {3.10) one has to substitute the values of ¢,, §, into the left-
hand part of (1.1) and make two separate estimates: one in the vicinity of
the boundary, in the narrow strip Dx(p < &) and the other inside the region,
l.e. in D — Dy . The estimate (3.18) for the regilon D — D,y follows direct-
ly from (2.3) if one remembers that functions a2 and 09, Qg the boundary-
layer type, are equal to zero outslde of the region py . The estimate for
the strip p, 1s carrled out 1n exactly the same way as in the case of a
circular plage [71.

Lemma 3.2. Let a(x,y), plx,y) and ¢(x,y) be twice continuously
differentiable functions in the reglon p . Then

1) S la, b] cdzdy = S la, ] bdzdy (3.11)
D D
it c(4)=b()=0 A&T)
2) { la, bl adedy = — § 0uea® + byad — B3 000,) dzdy (3.12)
D D

1f  a(d)=0@A&T).

The proof of the lemma 18 easily furnished in both cases through inte-
gration by parts.

*  The condition f (e) = O (e¥*1) means that | f (e) | < mekt1,
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Theorem 3.1 . The positive solution of problem (1.6) and (1.7)
is unique.

00 £ . We will take the equations of a membrane in the form (3.6)
7), setting ¢ = 0 1in \5 o; and neglecting the boundary condition

g us assume the existence of two solutions VY and V. fnen we have
=0 and P[V®] =0, Now we subtract one equality f.om the other and
multiply by the difference VUV _ v , then we integrate .over the region p
and add. Applying Lemma 3.2 we obtain

(s (D ) { Pep 0 g (20 (n A2y 2 L g

\ A — ) dxdj“r"\ (O R RN 5 ) SO £ AT e e e R A S 19

it D

N (e — @) 22 (W L By — ) o — ) T dydie = 00 (1)
Bearing in mind that (1.9) is valid for both solutions #+'' and F\'¥, we

arrive at the conclusion that the second integral in (3. 13)is non-negative;
hence i} = p,(®),

Theorem 3.2. If problem (1.6) and (1.7) has the positive so~
lution, then problem {(1.1) to {1.5) has one and only one membrane solution.

Proof . The uniqueness 1s proved in exactly the same way as the
uniqueness of the positive solution for a membrane. To prove the exlstence
of the membrane solutlion one applies a theorem due to Kantorovich [12] on
the convergence of the Newton s method for the operator equations. The first
approximation is taken as (qw-—-f Yy ). As applied to this problem the
theorem has the following form

Theorem. Let the operator P be defined in a sphere
LUV -V
of the space J and have a continuous second derivative in the closed sphere
Q(jV—V, < r) Moreover, let
1) the linear operation Uy = [Py,# (V)] exist
2) Ty (P I\’k*})iJH < n
3) 1T (P (V) Iz
&) b= K<Yy, r\>r0ﬂ(1—V1——2h)h'

Then Equation {3.8) has the solution V* to which the process converges.

Here
1Y =V o (3.14)

The conditions of the theorem are obviously satisfled 1f
1P (V) I Py ) B Py < e (3.19)
Let us show that {3.15) is fulfllled for sufficliently small e for any

k> 5 . From Lemma 3.1 we derive *

[PV, *)f << mie?t (3.16)

* Here and everywhere henceforth m &re certaln constants, independent of ¢.
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In order to estimate the second factor in (3.15), let us consider the
linear equation

PV};*(6V)=E, 8V = (OF, bw), L= (f, f2) (3.17)

Py * (8V) = (A2 (8F) + [y, Sw], e2A2 (8w) — [y, 8F] — [@y) buw])
OF |p= (8F), |p = bw|p = (bw),, [ =0 (3.18)

f & Ly, PV};* & [H - L]
From (3.17) and (3.18) we obtain

[ amracay+of @02 azay+ | (g, o 00)2 + @, ,, Gu1—
D D D

— 20y 0w dw)] dz dy = g (hOF + fdw) dz dy (3.19)
D

Let us now prove that for sufficlently small ¢ the last 1ntegral in
(3.17) 1is positive. To show that we look at the second derivatives Qg xx,
P, yy» Px, xy» For lnstance, for @k, xx we have

k42 k+2
s s
(pk,xx:Fo,xx—{_E 6Fs,xx+2 8hs,:cx
s=1 §=0

Bearing 1n mind that hy = h, = O0and &%, .. = O (¢) (see (2.18)), we easily
obtain .

P, xx = Fo, o T 0 (8) (3.20)
In the same manner we prove the validity of the relatlions
Pr, yy = Fo, yy + 0 () P, ay = Fo, xy T 0 () (3.21

Now let us note that from (1.9) follows directly the estimate

% (Fo, xetty? + Fo, it — 2F, ) do dy > m g | Vultdody  (ms>0) (3.22)
D b

Finally, by means of (3.20) to (3.22) for sufficlently small e

(3.23)

S (@, 1o Bw)? + Qg (B0 )2 — 29 8w Bue | do dy > m3§ | Vow [2de dy, m3 >0
i Now, from (3.19), using (3.23), we derive b

EA BF) i, << mg ) £ p,, A Ow) g, Smg /el fl, (3.24)

Let us also note the following inequalities for ¢, and y, which easily
follow from (3.20), (3.21) and (2.16)

f P ”C(g) < ms, I WPy ”C(‘z) Smgle (3.25)

Furthermore, from (3.17) we obtain the estimates
I 22 OF) I 2<<2 () fully,? -+ 1 18w, ) i) (3.26)
| A2 @) 2 <3/ et (| 2l 2 [8w, @l I 2+ 1I8F, ] 1L (3.27)

Hence, using the results from [17] and the estimates (3.24), (3.25) we
find
[ OF |y <Smy /82 el f 8wl <Tmg /el e, (3.28)

~
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From (3.17) and (3.28) it is easy to show that the operator

invertible and that the following estimate is valid I)Vk' is
I Py, )7 | <mg /& (3.29)
To form an estimate of | Py” | we consider the bilinear form
Py" (V) (8,V)® = ([dw, 8,0, — [Sw, 8,F} — [8,,w, OF])
Using the insertion theorems [18] we derive
I Py (8V) (8,V) IIL,2 << myo [ OV lig® 1 64V Ilg®
and hence follows the estimate
IPy" || < my (3.30)
From (3.16), (3.29) and (3.30) we obtain
I P (Vi) I, 1 Py, 9 2 Py | < mage ¥78 <1 (3.31)

provided that % > 5 and ¢ 1s sufficlently small (O < ¢ < ¢,).

And so the conditions of the Kantorovich theorem are fulfilled. Therefore,
Equation (3.8), equivalent to the problem (1.1) to (1.6), has the solution
V¥ = (F*, w,*) for which the estimates (3,1%) are valid. We compute the
quantity r, by means of (3.16) and (3.29)

IV — Vi [ <myge™™® (k>5) (3.32)
Due to the insertion theorems [18] we have from (3.32)
ol <me® k>5, i=1,2, 1=0,1,2) (3.33)
Finally, from (3.33) for 7 =2, t = 1, using (3.20), (3.21) we obtain
Foo=Fg et 0@, Fy=7F ,,+0(@), F,=F, + 0 (e) (3.34)
It follows from here that the inequality (1.9) is valid. This means that

the solucion V* constructed above 1s a membrane solution. Theorem 3.2 1is

thus proved. Along with the proof of Theorem 3.2 the following corollaries
have been arrived at.

Theorem 3.3 . For the membrane solution of problem (1.1) to (1.6)
the valid asymptotic representations are given by (2.1) and the remainders
allow the following estimates

D2 lyqry < rmase® (k=0,1,2,..., 1=0,1,2 (3.35)
12 D) < mige™? (k=0,1,...) (3.36)
12 o < mze” (k=1,2,...) (3.37)

The estimates (3.35) to (3.37) follow directly from (3.33) by means of
the triangle 1nequ§11ty, and bearing in mind that each differentacion of

functions h,°, ¢, ©of the boundary-layer type lowers thelr order in ¢ by
one.

4, On the membrane squations. The existence theorems for the positive
solutions of problem (1.6),(2.7) will be obtained below for certain cases.

1. Consider a circular-symmetrically loaded membrane. Let the x-axis
coincide with the direction of the radius vector for ¢ = O . Then, taking
advantage of the radial symmetry and eliminating the function i, . from
(1.6) we obtain Equation r

d 1 d @2

v
AL, e
ar v dr T 202 r

e <P(r)=gq(t)tdt (4.1)

0

r
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Here v = F,,, 1s the radlal force. The boundary conditions are dete:-
mined by the manner in which the membrane is supported along the contour.
We designate the stresses in the middle surface acting along the radius and
along the arc by ¢, and ¢, ,respectively. The latter are expressed in terms
of the stress function pF, by Formulas

1
o=—"Fy, 6p = Forr (x=0) (4.2)
Here (1.9) becomes the inequality
6,6, > 0 (4.3)
a) Let the membrane be rigidly built-in along the contour

dv/dr— v/ Pylpey =0 (0 < v<<0.5) (4.4)

Theorem 4.1 . The problem (4.1) and (4.4) has the positive so-
lution.

Proof . The existence of the solution of problem (4.1}, (4.4) has
been proved in {7]. It remains to prove (4.3). To that end we transfer from
(4.1), (4.4) to an equivalent integral equation

1 14w
15, = v=—2—r"1J(r, 1)—}*1'-2—(1—_{5_-\’)*1(1, 1) (4.5)
The followlng designation has been Introduced here
r 8 (p2
J(ry8) = S‘ﬂg Ey? df dn
[
Differentiating (4.5) with respect to r we obtain
1
1 1 2 14w
U(p:——z—r'zl(", 1)+Tg%d§+2(1_v)1(1,1) (4.6)
r
In the interval [0;1] Expression @ (r) =— 1/, r"% (r, 1) 1s a decreasing

function in r , since @ (0) = 0 and
oD [dr=r3J(r, 1)

Therefore, the minimum value of &(r) 1is attalned at point r = 1
Furthermore, obvlously

1
POISIONI <z I W) 0<v<09 @7

Finally, from (%4.6) with the help of (4.7) we find that 0, > 0,if r € (0, 1].
It 1s evident that ¢, is positive and the condition (4.3) 1s fulfilled.

Corollary 1 . The symmetrical solution of the problem of large
deflections of a circular-symmetrically loaded plate, rigidly bullt-in along
the contoui is a membrane solution. (This follows from Theorem 3.2). It
has been proved in [10] that in the case of a circular-symmetrically loaded
plate, rigidly built-in along the contour, for sufficliently large q(r) a
nonsymmetrical solutlon appears along with the symmetrical one. From the
corollary 1 and Theorem 3.2 follows.

Corollary 2 . The nonsymmetrical solution will not be a mem-
brane solution.

b) Let the membrane be subjected to a uniform normal tension on the con-
tour

Dl =T >0 (4.8)
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In the case when 7 = 0 , the contour 1is free of stresses.

Theorem 4.2 . Let the following inequality be fulfilled

T >> T, = max (9% ) (r))l"" (0= {0 ) (4.9)

0<Tr<ll M

De

Then problem (4.1), (4.8) has a unique positive solution.

Proof . The existence and uniqueness of solution of problem (4.1),
(4.8) have been proved in [7]. Let us fird when condition (4.3) is valid.
For that we transfer to an equivalent integral equation

4
r 1t CTQE
o, =0 S\ W () o Tr <qf 0 =\ L’v.fﬂ dr) (4.10)

3]

Differentlating (4.9) with respect to r , we obtain

—

~xn

2y (=7 (4.11)

2r2

1

Y di

G T\ YO
r

Let "T > O . Then from (4.10) we find that » > 7'r. Utilizing thls we find
from (4.11) that 1f 1/, ® (r) < 732 then O, is positive. Therefore, when
T > I,, conditlon (4.3) 1s fulfilled and the solution is positive.

Corollary 1. If 0K 7T< Ty the solution of problem (4.1),
(4%.8) will not be positive.

Corollary 2 . If T> Tp. then the symmetrical solution for a
circular symmetrically-loaded plate subjected to the tension T on the con-
tour will be a membrane solution. If, however, 0 < 7 < Ty, the symmertical
solution will not be a membrane one.

But i1f we restrict ourselves to the set of functions which depend on r
only and if we consider a solution which satisfies the condition ¢, > 0,
to be the membrane solution, then it can be shown that the symmetrical so~
lution will be the membrane one for any7 > 0[7]. The results given in [7]
and other, somewhat more exact ones, can be obtained by means of Theorems
3.2 and 3.3 which were proved for the one-dimensional case in the investi-
gation of the asymptotic expansions of the solutions of symmetrically loaded
shells of revolution [13]. 1In this connectlon it is important to point out
the followilng fact. The justification of validity of the asymptotlc expan-
sion is not related to the method by which it was constructed. The fulfill-
ment of the estimates (3.16), (3.29) and (3.15) turns out to be the only
essential matter.

2. Let the following stresses be given on the boundary of a membrane of
arbitrary shape
Fo«: v = acos?@ -+ bsin®o, Fy ,-|p =Y, —a)sin28 (4.12)
(>0, b >0)
Here o = 6{(4) 1s the angle which the normal n forms with the x-axls.

In the case when g = b = ¢ , Problem {1,1) to (1.4) and (4.12) becomes
problem (1.1) to (1.4%) and (1.8), which was investigated by Fife in {8].

Let us transform the initlal equations. We set

Fy = Fyo, F=F — Y, (a2 1 by (4.13)
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Here
al = ao__x/z > O, bl == bo-_l/’:z > O’ o = 1/2 (a2 + b2)
w = wOG"/z, p = q0'_3"', g = 80’"1’;2 (4'14)

Then (1.6) and (4.12) becomes problem
AF + 1/2 [w’ w] = 0! — AWy — blwyu - [Fv w] — p = 0 (415)
w(d)=F(A)=F,(4) =0, (AET) (4.16)

Repeating the argument of [8] 1t 1s easy to prove the existence of so-
lutions of problem (4.15), (4.16) for sufficlently small p{x,y)}. The proof
is obtained by utilizing the spaces ]?L“ of functions y , determined in 1
with continuous derivatives of order 7 , which uniformly satisfy H8lder's
condition with the exponent o{0 < a < 1) along the entire contour with the

|DYf (N) — D' j (V)]

4.
IN, — N, | (4.17)

| fliea = /50,2 = sup | D'f | -+ sup

It 1s assumed here that 1V1 = ﬁp“ n),]V2 = «p% n) and the uppe: bound
1s taken over all points ]VI:#:IV2 from » and over all derivativec of
order 1 .

Theorem 4.3. Let ”p]h+a < py. Then, if p, 1s sufficiently
small, there exists a solution of problem (4.15), (4.16), such that

“ F ” ltbta T ” w ” [+2+a < ”p ” l-.Lal"” (418)
Proof * . Let us define the sequence F!, ! by formulas
FO —_ wo — 0
NF = — 1y i e (i=1,2...) (4.19)
— = byt = p (@, y) + F, 0 (4.20)
wh(A) = Fi(a) = F,H(A) =0 (4.21)
Furthermore, we 1Introduce the designations
A =1 e+ 1 i (4.22)
By means of arguments of [8] and also the thecrem 7.3 of [19], 1t can be
shown that
A, <C (AL + 1P lha) (4.23)
Then we choose the constant (¢, such that
Po < YLy (4.24)

Now, 1t follows from (4.23) and (4.24) that

4, <l plf2, (i=1,2,...) (4.25)

In order to show that the sequences p!', ! converge to the solutlon, we
determine the differences

* For g, = b, =1 Theorem 4.3 was proved in [8] (Theorem 2).
1 1
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8'F = Ft— piY 8w = wh— Wil (4.26)

Now we replace the index { by ¢ — 1 1in Equations (4.19) to (4.21) and
subtratt the resulting equations from the original ones, Using Theorem 7.3
from [19] and (4.25) we obtaln

18 F s gra + 182 lpse <Cal P20 (187 F lppgpa + 18 0lhygp0)  (421)

It follows from (4.27) that in order for the sequence to converge to the
solution within the corresponding norms, the following condition must be

fulfilled _
Ca Vpo <1 (4.28)

From this and from (4.24%) it is clear that if D, 1s sufficlently small
the solution of the problem (4.15), (4.16) exists and (4.18) is fulfilled.

The following theorem results from the estimate (%.18).

Theorem 44 . If Vp,<d=min (¥,a,, /4,), then the solution
of problem (1.6), (4.12) will be positive.

Proof . It is easy to derive the following inegualities from (%.18)
| Fop | < d, [F,, 0 <d, | #, 1 <d (4 29)
Hence, bearing (4.13) in mind, we obtain for 7,
Fopa>lhas™,  Fo o >1yb6%, Py Foy— Fok, >0 (4.30)

In the case when g = p = 0 , we have to set p, = % .

4
Corollary . If”p”ka-<:d, then the solution of problem (1.1)

1
to (1.4) and (4.12) is the membrane solution.

3. As an example let us conslder a circular membrane subjected on the
contour to the nonsymmetrical tensile stresses of the form

Orlr=1 = a + bsin®q, T|ry =0 (4.31)

Here g and ) are constants which satisfy the condition ¢ > O if

b> Oand a>|p|>0, if b < O .

Equations (1.6) and (4.31) can be reduced to the form
AF + Y, lw,w]l = 0, —Lw — [F,w] —¢g=20 (4.32)
W|req = F ‘r=1 = oF / arlr:l =0 (433)

where [ 1s the elliptic operator. This can be done by setting
F=F,—"Yart —Y,0% (1 4+ cos 29 — Yy?cos 29), w =w,
Now, applying the arguments of Theorems 4.3 and 4.4 to (4.32) and (%.33)
we establish the following Theorem.

Theorem 4.5 . There exists a constant p, , such that 1if
1l < p,, the solution of problem (1.6), (4.31) is positive.
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In the general case of the problem (1.6), (1.7) the solution is not posi-
tive. As an example conslder a circular membrane subjected at the ends of a
diameter to two radial concentrated loads p , whereas the transverse loads
are absent. Then (1.6) transfers into Equation

A%2Fy =0

The formulas fors,, 5, and 1 , as well as the graphs of these functions
plotted versus r and ¢ , are given in [21](p.612) for this particular
case. It 1s clear from the graphs that g, and G, change thelr signs and
hence do not possess the property of belng positive. The statement of the
corollary 1 of Theorem 4.2 may serve as another example.

The author expresses gratitude to V.I. Iudovich for his great help in
this work.
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